Skip to main content
Log in

Physical Exercise and Epigenetic Modifications in Skeletal Muscle

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Physical activity and sports play major roles in the overall health status of humans. It is well known that regular exercise helps to lower the risk for a broad variety of health problems, such as cardiovascular disease, type 2 diabetes, and cancer. Being physically active induces a wide variety of molecular adaptations, for example fiber type switches or other metabolic alterations, in skeletal muscle tissue. These adaptations are based on exercise-induced changes to the skeletal muscle transcriptome. Understanding their nature is crucial to improve the development of exercise-based therapeutic strategies. Recent research indicates that specifically epigenetic mechanisms, i.e., pathways that induce changes in gene expression patterns without altering the DNA base sequence, might play a major role in controlling skeletal muscle transcriptional patterns. Epigenetic mechanisms include DNA and histone modifications, as well as expression of specific microRNAs. They can be modulated by environmental factors or external stimuli, such as exercise, and eventually induce specific and fine-tuned changes to the transcriptional response. In this review, we highlight current knowledge on epigenetic changes induced in exercising skeletal muscle, their target genes, and resulting phenotypic changes. In addition, we raise the question of whether epigenetic modifications might serve as markers for the design and management of optimized and individualized training protocols, as prognostic tools to predict training adaptation, or even as targets for the design of “exercise mimics”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hechanova RL, Wegler JL, Forest CP. Exercise: a vitally important prescription. JAAPA. 2017;30:17–22.

    Article  PubMed  Google Scholar 

  2. Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219:205–13.

    Article  PubMed  Google Scholar 

  4. Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol. 2017;595:2931–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ntanasis-Stathopoulos J, Tzanninis JG, Philippou A, Koutsilieris M. Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact. 2013;13:133–46.

    CAS  PubMed  Google Scholar 

  6. Ehlert T, Simon P, Moser DA. Epigenetics in sports. Sports Med. 2013;4:93–110.

    Article  Google Scholar 

  7. Pareja-Galeano H, Sanchis-Gomar F, García-Giménez JL. Physical exercise and epigenetic modulation: elucidating intricate mechanisms. Sports Med. 2014;44:429–36.

    Article  PubMed  Google Scholar 

  8. Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, de Oliveira EM. Exercise training and epigenetic regulation: multilevel modification and regulation of gene expression. Adv Exp Med Biol. 2017;1000:281–322.

    Article  CAS  PubMed  Google Scholar 

  9. Ecker S, Pancaldi V, Valencia A, Beck S, Paul DS. Epigenetic and transcriptional variability shape phenotypic plasticity. Bioessays. 2018;40(2):1700148.

    Article  CAS  Google Scholar 

  10. McGee SL, Walder KR. Exercise and the skeletal muscle epigenome. Cold Spring Harb Perspect Med. 2017;7(9):a029876. https://doi.org/10.1101/cshperspect.a029876.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meier K, Recillas-Targa F. New insights on the role of DNA methylation from a global view. Front Biosci (Landmark Ed). 2017;22:644–68.

    Article  CAS  Google Scholar 

  12. Yong W-S, Hsu F-M, Chen P-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delatte B, Deplus R, Fuks F. Playing TETris with DNA modifications. EMBO J. 2014;33:1198–211.

    Article  CAS  Google Scholar 

  14. Ling C, Rönn T. Epigenetic adaptation to regular exercise in humans. Drug Discov Today. 2014;19:1015–8.

    Article  CAS  PubMed  Google Scholar 

  15. Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15:405–11.

    Article  CAS  PubMed  Google Scholar 

  16. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012;61:3322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanzleiter T, Jähnert M, Schulze G, Selbig J, Hallahan N, Schwenk RW, et al. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice. Am J Physiol Endocrinol Metab. 2015;308(10):E912–20.

    Article  CAS  PubMed  Google Scholar 

  18. Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekström TJ, Tegnér J, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9:1557–69.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, et al. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiol Genom. 2014;46:747–65.

    Article  CAS  Google Scholar 

  20. Pattamaprapanont P, Garde C, Fabre O, Barrès R. Muscle contraction induces acute hydroxymethylation of the exercise-responsive gene Nr4a3. Front Endocrinol (Lausanne). 2016;7:165. https://doi.org/10.3389/fendo.2016.00165 (eCollection 2016).

    Article  Google Scholar 

  21. King-Himmelreich TS, Schramm S, Wolters MC, Schmetzer J, Möser CV, Knothe C, et al. The impact of endurance exercise on global and AMPK gene-specific DNA methylation. Biochem Biophys Res Commun. 2016;474:284–90.

    Article  CAS  PubMed  Google Scholar 

  22. Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, et al. Effects of sleeping with reduced carbohydrate availability on acute training responses. J Appl Physiol (1985). 2015;119(6):643–55.

    Article  CAS  Google Scholar 

  23. Laker RC, Lillard TS, Okutsu M, Zhang M, Hoehn KL, Connelly JJ, et al. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes. 2014;63:1605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lochmann TL, Thomas RR, Bennett JP Jr, Taylor SM. Epigenetic modifications of the PGC-1α promoter during exercise induced expression in mice. PLoS One. 2015;10(6):e0129647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kasch J, Kanzleiter I, Saussenthaler S, Schürmann A, Keijer J, van Schothorst E, et al. Insulin sensitivity linked skeletal muscle Nr4a1 DNA methylation is programmed by the maternal diet and modulated by voluntary exercise in mice. J Nutr Biochem. 2018;57:86–92.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic regulatory effect of exercise on glutathione peroxidase 1 expression in the skeletal muscle of severely dyslipidemic mice. PLoS One. 2016;11(3):e0151526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seaborne RA, Strauss J, Cocks M, Shepherd S, O’Brien TD, Someren KAV, et al. Methylome of human skeletal muscle after acute and chronic resistance exercise training, detraining and retraining. Sci Data. 2018;5:180213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seaborne RA, Strauss J, Cocks M, Shepherd S, O’Brien TD, van Someren KA, et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep. 2018;8:1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laker RC, Garde C, Camera DM, Smiles WJ, Zierath JR, Hawley JA, et al. Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans. Sci Rep. 2017;7:15134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49:1567–78.

    Article  PubMed  Google Scholar 

  31. Carter HN, Pauly M, Tryon LD, Hood DA. Effect of contractile activity on PGC-1α transcription in young and aged skeletal muscle. J Appl Physiol. 1985;2018(124):1605–15.

    Google Scholar 

  32. Fisher AG, Seaborne RA, Hughes TM, Gutteridge A, Stewart C, Coulson JM, et al. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. FASEB J. 2017;31:5268–82.

    Article  CAS  PubMed  Google Scholar 

  33. Stephens NA, Brouwers B, Eroshkin AM, Yi F, Cornnell HH, Meyer C, et al. Exercise response variations in skeletal muscle PCr recovery rate and insulin sensitivity relate to muscle epigenomic profiles in individuals with type 2 diabetes. Diabetes Care. 2018;41:2245–54.

    Article  CAS  PubMed  Google Scholar 

  34. Bajpeyi S, Covington JD, Taylor EM, Stewart LK, Galgani JE, Henagan TM. Skeletal muscle PGC1α -1 nucleosome position and -260 nt DNA methylation determine exercise response and prevent ectopic lipid accumulation in men. Endocrinology. 2017;158(7):2190–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Terruzzi I, Senesi P, Montesano A, La Torre A, Alberti G, Benedini S, et al. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes. Physiol Genom. 2011;43:965–73.

    Article  CAS  Google Scholar 

  36. Gates LA, Foulds CE, O’Malley BW. Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem Sci. 2017;42:977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587:5951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol. 1985;2011(110):258–63.

    Google Scholar 

  39. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Investig. 2007;117:2459–67.

    Article  CAS  PubMed  Google Scholar 

  40. Smith JA, Kohn TA, Chetty AK, Ojuka EO. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am J Physiol Endocrinol Metab. 2008;295:E698–704.

    Article  CAS  PubMed  Google Scholar 

  41. Joseph JS, Ayeleso AO, Mukwevho E. Exercise increases hyper-acetylation of histones on the Cis-element of NRF-1 binding to the Mef2a promoter: implications on type 2 diabetes. Biochem Biophys Res Commun. 2017;486:83–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hong S, Zhou W, Fang B, Lu W, Loro E, Damle M, et al. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nat Med. 2017;23:223–34.

    Article  CAS  PubMed  Google Scholar 

  43. Ohsawa I, Konno R, Masuzawa R, Kawano F. Amount of daily exercise is an essential stimulation to alter the epigenome of skeletal muscle in rats. J Appl Physiol (1985). 2018;125(4):1097–104.

    Article  CAS  Google Scholar 

  44. Barreiro E, Sznajder JI. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction. J Appl Physiol. 1985;2013(114):1263–72.

    Google Scholar 

  45. Thalacker-Mercer A, Stec M, Cui X, Cross J, Windham S, Bamman M. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiol Genom. 2013;45:499–507.

    Article  CAS  Google Scholar 

  46. Masuzawa R, Konno R, Ohsawa I, Watanabe A, Kawano F. Muscle type-specific RNA polymerase II recruitment during PGC-1α gene transcription after acute exercise in adult rats. J Appl Physiol (1985). 2018. https://doi.org/10.1152/japplphysiol.00202.2018.

    Article  Google Scholar 

  47. Pandorf CE, Haddad F, Wright C, Bodell PW, Baldwin KM. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am J Physiol Cell Physiol. 2009;297:C6–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawano F, Nimura K, Ishino S, Nakai N, Nakata K, Ohira Y. Differences in histone modifications between slow- and fast-twitch muscle of adult rats and following overload, denervation, or valproic acid administration. J Appl Physiol. 1985;2015(119):1042–52.

    Google Scholar 

  49. Willkomm L, Gehlert S, Jacko D, Schiffer T, Bloch W. p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle. PLoS One. 2017;12(5):e0176609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ribich S, Harvey D, Copeland RA. Drug discovery and chemical biology of cancer epigenetics. Cell Chem Biol. 2017;24:1120–47.

    Article  CAS  PubMed  Google Scholar 

  51. Penna F, Costelli P. New developments in investigational HDAC inhibitors for the potential multimodal treatment of cachexia. Expert Opin Investig Drugs. 2018. https://doi.org/10.1080/13543784.2019.1557634 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  52. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.

    Article  CAS  PubMed  Google Scholar 

  53. Polakovičová M, Musil P, Laczo E, Hamar D, Kyselovič J. Circulating microRNAs as potential biomarkers of exercise response. Int J Mol Sci. 2016;17(10):E1553.

    Article  CAS  PubMed  Google Scholar 

  54. Silva GJJ, Bye A, El Azzouzi H, Wisløff U. MicroRNAs as important regulators of exercise adaptation. Prog Cardiovasc Dis. 2017;2017(60):130–51.

    Article  Google Scholar 

  55. Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics. Oncol Rep. 2017;37:3–9.

    Article  PubMed  Google Scholar 

  56. Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2018;233:2007–18.

    Article  CAS  PubMed  Google Scholar 

  57. Daskalakis NP, Provost AC, Hunter RG, Guffanti G. Noncoding RNAs: stress, glucocorticoids, and posttraumatic stress disorder. Biol Psychol. 2018;83:849–65.

    Article  CAS  Google Scholar 

  58. McCarthy JJ. The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev. 2011;39:150–4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Luo W, Nie Q, Zhang X. MicroRNAs involved in skeletal muscle differentiation. J Genet Genom. 2013;40:107–16.

    Article  CAS  Google Scholar 

  60. Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev Biol. 2016;410(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  61. Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009;4(5):e5610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, et al. The microRNA miR-696 regulates PGC-1 alpha in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab. 2010;298:E799–806.

    Article  CAS  PubMed  Google Scholar 

  63. Yamamoto H, Morino K, Nishio Y, Ugi S, Yoshizaki T, Kashiwagi A, et al. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am J Physiol Endocrinol Metab. 2012;303:E1419–27.

    Article  CAS  PubMed  Google Scholar 

  64. Keller P, Vollaard NB, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen T, et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol. 1985;110:46–59.

    Article  CAS  Google Scholar 

  65. Nielsen S, Scheele C, Yfanti C, Akerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588:4029–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol. 2013;591:4637–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oikawa S, Lee M, Motohashi N, Maeda S, Akimoto T. An inducible knockout of Dicer in adult mice does not affect endurance exercise-induced muscle adaptation. Am J Physiol Cell Physiol. 2018. https://doi.org/10.1152/ajpcell.00278.2018.

    Article  PubMed  Google Scholar 

  68. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol. 1985;2007(102):306–13.

    Google Scholar 

  69. Mueller M, Breil FA, Lurman G, Klossner S, Flück M, Billeter R, et al. Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology. 2011;57:528–38.

    Article  PubMed  Google Scholar 

  70. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol. 1985;2011(110):309–17.

    Google Scholar 

  71. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 2008;295:E1333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ringholm S, Biensø RS, Kiilerich K, Guadalupe-Grau A, Aachmann-Andersen NJ, Saltin B, et al. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab. 2011;301:E649–58.

    Article  CAS  PubMed  Google Scholar 

  73. Fyfe JJ, Bishop DJ, Zacharewicz E, Russell AP, Stepto NK. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;31:R1297–311.

    Article  Google Scholar 

  74. Makarova JA, Maltseva DV, Galatenko VV, Abbasi A, Maximenko DG, Grigoriev AI, et al. Exercise immunology meets miRNAs. Exerc Immunol Rev. 2014;20:135–64.

    PubMed  Google Scholar 

  75. Mooren FC, Viereck J, Krüger K, Thum T. Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol. 2014;306(4):H557–63.

    Article  CAS  PubMed  Google Scholar 

  76. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589:3983–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wardle SL, Bailey ME, Kilikevicius A, Malkova D, Wilson RH, Venckunas T, et al. Plasma microRNA levels differ between endurance and strength athletes. PLoS One. 2015;10(4):e0122107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sawada S, Kon M, Wada S, Ushida T, Suzuki K, Akimoto T. Profiling of circulating microRNAs after a bout of acute resistance exercise in humans. PLoS One. 2013;8(7):e70823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bye A, Røsjø H, Aspenes ST, Condorelli G, Omland T, Wisløff U. Circulating microRNAs and aerobic fitness—the HUNT-Study. PLoS One. 2013;8(2):e57496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2):e87308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aoi W, Ichikawa H, Mune K, Tanimura Y, Mizushima K, Naito Y, et al. Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front Physiol. 2013;4:80.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Uhlemann M, Möbius-Winkler S, Fikenzer S, Adam J, Redlich M, Möhlenkamp S, et al. Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur J Prev Cardiol. 2014;21:484–91.

    Article  PubMed  Google Scholar 

  83. Horak M, Zlamal F, Iliev R, Kucera J, Cacek J, Svobodova L, et al. Exercise-induced circulating microRNA changes in athletes in various training scenarios. PLoS One. 2018;13(1):e0191060. https://doi.org/10.1371/journal.pone.0191060 eCollection 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Håkansson KEJ, Sollie O, Simons KH, Quax PHA, Jensen J, Nossent AY. Circulating Small non-coding RNAs as biomarkers for recovery after exhaustive or repetitive exercise. Front Physiol. 2018;9:1136.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ramos AE, Lo C, Estephan LE, Tai YY, Tang Y, Zhao J, et al. Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. Am J Physiol Heart Circ Physiol. 2018;315(2):H273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Denham J, Marques FZ, O’Brien BJ, Charchar FJ. Exercise: putting action into our epigenome. Sports Med. 2014;44:189–209.

    Article  PubMed  Google Scholar 

  87. Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an ‘epi’-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell. 2016;15:603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Thomas Beiter for help with preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Munz.

Ethics declarations

Funding

This review was supported by a grant from the intramural graduate school “iReAct” of the University and the University Hospital Tübingen.

Conflict of interest

Manuel Widmann, Andreas Nieß, and Barbara Munz declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widmann, M., Nieß, A.M. & Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med 49, 509–523 (2019). https://doi.org/10.1007/s40279-019-01070-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01070-4

Navigation